

School District of Marshfield Course Syllabus

Course Name: Pre-Calculus AB Honors

Length of Course: 1 Year

Credit: 1

Program Goal:

The School District of Marshfield Mathematics Program will prepare students for college and career in the 21st century by ensuring *all* students learn based on skills and knowledge needed to succeed in post-secondary education/training, career, and life. The 4K through High School Mathematics curriculum is designed to support every student in achieving success. Students will be placed in to the driver's seat. Innovative educators will tailor instruction to student need through engaging learning activities and relevant assessment.

Course Description:

Prepare for AP Calculus AB (221). Emphasis will include: trigonometry, analytic geometry, behavior of mathematical functions, limits and elementary concepts of calculus.

PREREQUISITE: Algebra II H or instructor's recommendation

Standards:		
Wisconsin Standards for Mathematical Practices (MP)		
MP: 1, 2, 3, 4, 5, 6, 7, 8	 Make sense of problems and persevere in solving them. Reason abstractly and quantitatively. Construct viable arguments and critique the reasoning of others. Model with mathematics. Use appropriate tools strategically. 	

	6 Attend to precision		
	6. Attend to precision.7. Look for and make use of structure.		
	8. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning.		
Wisconsin Standards for Mathematics- Number and Quantity			
The Complex Number System (N-CN)			
Perform arithmetic operations with	1. Know there is a complex number i such that $i^2 = -1$, and		
complex numbers.	every complex number has the form $a + bi$ with a and b		
N-CN: 1, 2, 3	real.		
	2. Use the relation $i^2 = -1$ and the commutative,		
	associative, and distributive properties to add, subtract,		
	and multiply complex numbers.		
	3. (+) Find the conjugate of a complex number; use		
	conjugates to find moduli and quotients of complex		
Has compley numbers in red-manis	numbers.		
Use complex numbers in polynomial identities and equations.	7. Solve quadratic equations with real coefficients that have complex solutions.		
N-CN: 7, 8, 9	8. (+) Extend polynomial identities to the complex		
11-C11. 1, 6, 9	numbers. For example, rewrite $x^2 + 4$ as $(x + 2i)(x - 2i)$.		
	9. (+) Know the Fundamental Theorem of Algebra; show		
	that it is true for quadratic polynomials.		
Vector and Matrix Quantities (N-VM)			
Represent and model with vector	1. (+) Recognize vector quantities as having both		
quantities.	magnitude and direction. Represent vector quantities by		
N-VM: 1, 2	directed line segments, and use appropriate symbols for		
·	vectors and their magnitudes (e.g., v , $ v $,		
	$ \mathbf{v} , \mathbf{v}$).		
	2. (+) Find the components of a vector by subtracting the		
	coordinates of an initial point from the coordinates of a		
	terminal point.		
Perform operations on vectors.	4. (+) Add and subtract vectors.		
N-VM: 4a, 4b, 4c, 4d, 5a, 5b	a. Add vectors end-to-end, component-wise, and by		
	the parallelogram rule. Understand that the		
	magnitude of a sum of two vectors is typically not		
	the sum of the magnitudes.		
	b. Given two vectors in magnitude and direction		
	form, determine the magnitude and direction of their sum.		
	c. Understand vector subtraction $\mathbf{v} - \mathbf{w}$ as $\mathbf{v} + (-\mathbf{w})$,		
	where $-w$ is the additive inverse of w , with the		
	same magnitude as w and pointing in the opposite		
	direction. Represent vector subtraction graphically		
	by connecting the tips in the appropriate order,		
	and perform vector subtraction component-wise.		
	5. (+) Multiply a vector by a scalar.		
	a. Represent scalar multiplication graphically by		
	scaling vectors and possibly reversing their		
	direction; perform scalar multiplication		
	component-wise, e.g., as $c(vx, vy) = (cvx, cvy)$.		
	b. Compute the magnitude of a scalar multiple <i>cv</i>		
	using $ cv = c v$. Compute the direction of cv		

	knowing that when $ a _{V} \neq 0$, the direction of av is
	knowing that when $ c v \neq 0$, the direction of cv is either along v (for $c > 0$) or against v (for $c < 0$).
Perform operations on matrices and	6. (+) Use matrices to represent and manipulate data, e.g.,
use matrices in applications.	to represent payoffs or incidence relationships in a
N-VM: 6, 7, 8, 9, 10, 11	network.
11- 111. 0, 7, 8, 9, 10, 11	
	7. (+) Multiply matrices by scalars to produce new
	matrices, e.g., as when all of the payoffs in a game are doubled.
	8. (+) Add, subtract, and multiply matrices of appropriate dimensions.
	9. (+) Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a
	commutative operation, but still satisfies the associative
	and distributive properties.
	10. (+) Understand that the zero and identity matrices play
	a role in matrix addition and multiplication similar to the
	role of 0 and 1 in the real numbers. The determinant of a
	square matrix is nonzero if and only if the matrix has a
	multiplicative inverse. 11. (+) Multiply a vector (regarded as a matrix with one
	column) by a matrix of suitable dimensions to produce
	another vector. Work with matrices as transformations of
	vectors.
Wisconsin Standards for Mathemat	
Arithmetic with Polynomials and Ratio	
Understand the relationship between	2. Know and apply the Remainder Theorem: For a
zeros and factors of polynomials.	polynomial $p(x)$ and a number a, the remainder on
A-APR: 2, 3	division by $x - a$ is $p(a)$, so $p(a) = 0$ if and only if $(x - a)$
	is a factor of $p(x)$.
	3. Identify zeros of polynomials when suitable
	factorizations are available, and use the zeros to construct
	a rough graph of the function defined by the polynomial.
Use polynomial identities to solve	6. Rewrite simple rational expressions in different forms;
problems.	write $a(x)/b(x)$ in the form $q(x) + r(x)/b(x)$, where $a(x)$,
A-APR: 6, 7	b(x), $q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$
	less than the degree of b(x), using inspection, long
	division, or, for the more complicated examples, a
	computer algebra system.
	7. (+) Understand that rational expressions form a system
	analogous to the rational numbers, closed under addition,
	subtraction, multiplication, and division by a nonzero
	rational expression; add, subtract, multiply, and divide
	rational expressions.
Reasoning with Equations and Inequal	
Solve systems of equations.	7. Solve a simple system consisting of a linear equation
A-REI: 7, 9	and a quadratic equation in two variables algebraically
	and graphically. For example, find the points of
	intersection between the line $y = -3x$ and the circle $x^2 + y^2$
	=3.

	9. (+) Find the inverse of a matrix if it exists and use it to			
	solve systems of linear equations (using technology for			
	matrices of dimension 3×3 or greater).			
VV:: C4				
Wisconsin Standards for Mathematics- Functions				
Interpreting Functions (F-IF)				
Interpret functions that arise in	6. Calculate and interpret the average rate of change of a			
applications in terms of the context	function (presented symbolically or as a table) over a			
F-IF: 6	specified interval. Estimate the rate of change from a			
A 7 0 44 1 100	graph.			
Analyze functions using different	7. Graph functions expressed symbolically and show key			
representations.	features of the graph, by hand in simple cases and using			
F-IF: 7d, 7e, 8b	technology for more complicated cases.			
	d. (+) Graph rational functions, identifying zeros			
	and asymptotes when suitable factorizations are			
	available, and showing end behavior. e. Graph exponential and logarithmic functions,			
	e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and			
	trigonometric functions, showing period, midline,			
	and amplitude.			
	8. Write a function defined by an expression in different			
	but equivalent forms to reveal and explain different			
	properties of the function.			
	b. Use the properties of exponents to interpret			
	expressions for exponential functions. For			
	example, identify percent rate of change in			
	functions such as $y = (1.02)^t$, $y = (0.97)^t$, $y =$			
	$(1.01)^{12t}$, $y = (1.2)^{t/10}$, and classify them as			
	representing exponential growth or decay.			
Building Functions (F-BF)				
Build new functions from existing	3. Identify the effect on the graph of replacing $f(x)$ by $f(x)$			
functions.	+k, k f(x), f(kx), and f(x + k) for specific values of k (both			
F-BF: 3, 4a, 4b, 4c, 4d, 5	positive and negative); find the value of k given the			
	graphs. Experiment with cases and illustrate an			
	explanation of the effects on the graph using technology.			
	Include recognizing even and odd functions from their			
	graphs and algebraic expressions for them.			
	4. Find inverse functions.			
	a. Solve an equation of the form $f(x) = c$ for a simple			
	function f that has an inverse and write an			
	expression for the inverse. For example, $f(x) = 2x^3$			
	$or f(x) = (x+1)/(x-1) $ for $x \ne 1$.			
	b. (+) Verify by composition that one function is the			
	inverse of another.			
	c. (+) Read values of an inverse function from a			
	graph or a table, given that the function has an			
	inverse.			
	d. (+) Produce an invertible function from a non-			
	invertible function by restricting the domain.			

	5. (+) Understand the inverse relationship between
	exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.
T' O I ' IE ' IN I	
Linear, Quadratic and Exponential Mod	
Construct and compare linear,	1. Distinguish between situations that can be modeled
quadratic, and exponential models and	with linear functions and with exponential functions.
solve problems.	c. Recognize situations in which a quantity grows or
F-LE: 1c	decays by a constant percent rate per unit interval
	relative to another.
Trigonometric Functions (F-TF)	
Extend the domain of trigonometric	1. Understand radian measure of an angle as the length of
functions using the unit circle.	the arc on the unit circle subtended by the angle.
F-TF: 1, 2, 3, 4	2. Explain how the unit circle in the coordinate plane
	enables the extension of trigonometric functions to all real
	numbers, interpreted as radian measures of angles
	traversed counterclockwise around the unit circle.
	3. (+) Use special triangles to determine geometrically the
	values of sine, cosine, tangent for $\pi/3$, $\pi/4$ and $\pi/6$, and
	use the unit circle to express the values of sine, cosine,
	and tangent for π - x , π + x , and 2π - x in terms of their
	values for x , where x is any real number.
	4. Use the unit circle to explain symmetry (odd and even)
	* * * * * * * * * * * * * * * * * * * *
N/ 11 ' 1' 1 '41	and periodicity of trigonometric functions.
Model periodic phenomena with	5. Choose trigonometric functions to model periodic
trigonometric functions.	phenomena with specified amplitude, frequency, and
F-TF: 5, 6, 7	midline.
	6. (+) Understand that restricting a trigonometric function
	to a domain on which it is always increasing or always
	decreasing allows its inverse to be constructed.
	7. (+) Use inverse functions to solve trigonometric
	equations that arise in modeling contexts; evaluate the
	solutions using technology, and interpret them in terms of
	the context.
Prove and apply trigonometric	8. Prove the Pythagorean identity $\sin^2(\theta) + \cos^2(\theta) = 1$ and
identities.	use it to find $sin(\theta)$, $cos(\theta)$, or $tan(\theta)$ given $sin(\theta)$, $cos(\theta)$,
F-TF: 8, 9	or $tan(\theta)$ and the quadrant of the angle.
	9. (+) Prove the addition and subtraction formulas for sine,
	cosine, and tangent and use them to solve problems.
Wisconsin Standards for Mathematic	es- Geometry
Similarity, Right Triangles and Trigonor	metry (G-SRT)
Apply trigonometry to general	9. (+) Derive the formula $A = 1/2$ $ab \sin(C)$ for the area of
triangles.	a triangle by drawing an auxiliary line from a vertex
G-SRT: 9, 10, 11	perpendicular to the opposite side.
	10. (+) Prove the Laws of Sines and Cosines and use them
	to solve problems.
	11. (+) Understand and apply the Law of Sines and the
	Law of Cosines to find unknown measurements in right
	and non-right triangles (e.g., surveying problems, resultant
	forces).

Key Vocabulary:			
Symmetry	Symmetry with axes	Symmetry with origin	Symmetry with $y = x$
Operations on	Difference quotient of	Vertical line test	Odd and even
functions	the function $f(x)$		functions
Increasing decreasing functions	Determining extrema	Average rate of change of a function	Slope of a secant
Piecewise-defined functions	Transformations	Shifts, stretches and shrinks	Regression Equations
Correlation coefficient	Multiplicity of a zero	End behavior	Oblique asymptote
Depressed equation	Fundamental Theorem of Algebra	Conjugate pairs	Composite functions
Inverse functions	Growth or decay functions	Financial models	Effective rates of return
Present value	Radians	Arc length	Area of a sector
Amplitude	Period	Phase shift	Trigonometric Identities
Principal values	Law of sines	Law of cosines	
Magnitude of a vector	Direction of a vector	Equal vectors	Opposite vectors
Perpendicular vectors	Augmented matrices	Coefficient matrices	Identity matrix
Inverse matrix	Partial fraction decomposition	Linear Programming	Limit of a function
One sided limits	Limits involving infinity		

Topics/Content Outline- Units and Themes:

Quarter 1:

• Families of graphs Part 1 (Linear, Quadratic, Cubic, Square Root, Cubic Root, Absolute Value, Power, Rational, and Step/Greatest Integer Functions)

Quarter 2:

• Families of graphs Part 2 (Exponential, Logarithmic, Logistic, Sine, Cosine)

Quarter 3:

Trigonometry

Quarter 4:

• Vectors, Systems of Equations, Matrices, and Limits

Primary Resource(s):		
Precalculus: Graphical, Numerical,	Math XL, Pearson Realize	
Algebraic Common Core, 10th Edition		
Addison-Wesley		
ISBN: 978-0-13-467209-0		
© 2019		